Math 221: LINEAR ALGEBRA

Chapter 6. Vector Spaces §6-3. Linear Independence and Dimension

 $\begin{tabular}{ll} Le & Chen 1 \\ Emory University, 2021 Spring \\ \end{tabular}$

(last updated on 04/05/2021)

The Fundamental Theorem

Bases and Dimension

The Fundamental Theorem

Bases and Dimension

Definition

Let V be a vector space and $S = \{u_1, u_2, \dots, u_k\}$ a subset of V. The set S is linearly independent or simply independent if the following condition holds:

$$s_1 \mathbf{u}_1 + s_2 \mathbf{u}_2 + \dots + s_k \mathbf{u}_k = \mathbf{0} \quad \Rightarrow \quad s_1 = s_2 = \dots = s_k = 0$$

i.e., the only linear combination that vanishes is the trivial one. If S is not linearly independent, then S is said to be dependent.

Example

The set
$$S = \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\5 \end{bmatrix} \right\}$$
 is a dependent subset of \mathbb{R}^3

The set
$$S = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix} \right\}$$
 is a dependent subset of \mathbb{R}^3 because

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

has nontrivial solutions, for example a = 2, b = 3 and c = -1.

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Is the set $T = \{3x^2 - x + 2, x^2 + x - 1, x^2 - 3x + 4\}$ an independent subset of \mathcal{P}_2 ?

Solution

Suppose $a(3x^2 - x + 2) + b(x^2 + x - 1) + c(x^2 - 3x + 4) = 0$, for some a, b, c $\in \mathbb{R}$. Then

$$x^{2}(3a + b + c) + x(-a + b - 3c) + (2a - b + 4c) = 0,$$

implying that

$$3a + b + c = 0$$

$$-a + b - 3c = 0$$

$$2a - b + 4c = 0$$

Solving this linear system of three equations in three variables

$$\left[\begin{array}{ccc|c} 3 & 1 & 1 & 0 \\ -1 & 1 & -3 & 0 \\ 2 & -1 & 4 & 0 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Since there is nontrivial solution, T is a dependent subset of \mathcal{P}_2 .

Is
$$U = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$
 an independent subset of \mathbf{M}_{22} ?

Solution

Suppose a
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 + b $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ + c $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ for some a, b, c $\in \mathbb{R}$.

$$a+c = 0$$
, $a+b = 0$,
 $b+c = 0$, $a+c = 0$.

This system of four equations in three variables has unique solution a=b=c=0,

$$\Downarrow$$

U is an independent subset of \mathbf{M}_{22} .

Example (An independent subset of \mathcal{P}_n)

Consider $\{1, x, x^2, \dots, x^n\}$, and suppose that

$$a_0 \cdot 1 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

for some $a_0, a_1, \ldots, a_n \in \mathbb{R}$. Then $a_0 = a_1 = \cdots = a_n = 0$, and thus $\{1, x, x^2, \ldots, x^n\}$ is an independent subset of \mathcal{P}_n .

Example (Polynomials with distinct degrees)

Any set of polynomials with DISTINCT degrees is independent.

For example,

$${2x^4 - x^3 + 5, -3x^3 + 2x^2 + 2, 4x^2 + x - 3, 2x - 1, 3}$$

is an independent subset of \mathcal{P}_4 .

Example

As we saw earlier, $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ (the standard basis of \mathbb{R}^n) is an independent subset of \mathbb{R}^n .

Example

$$\mathbf{U} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is an independent subset of M_{32} .

Example (An independent subset of \mathbf{M}_{mn})

In general, the set of mn m \times n matrices that have a '1' in position (i, j) and zeros elsewhere, $1 \le i \le m$, $1 \le j \le n$, constitutes an independent subset of \mathbf{M}_{mn} .

Example

Let V be a vector space.

1. If \mathbf{v} is a nonzero vector of V, then $\{\mathbf{v}\}$ is an independent subset of V.

Proof. Suppose that $k\mathbf{v} = \mathbf{0}$ for some $k \in \mathbb{R}$. Since $\mathbf{v} \neq \mathbf{0}$, it must be that k = 0, and therefore $\{\mathbf{v}\}$ is an independent set.

2. The zero vector of V, $\mathbf{0}$ is never an element of an independent subset of V.

Proof. Suppose $S = \{\mathbf{0}, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_k\}$ is a subset of V. Then

$$1(\mathbf{0}) + 0(\mathbf{v}_2) + 0(\mathbf{v}_3) + \dots + 0(\mathbf{v}_k) = \mathbf{0}.$$

Since the coefficient of $\mathbf{0}$ (on the left-hand side) is '1', we have a nontrivial vanishing linear combination of the vectors of S. Therefore, S is dependent.

Let V be a vector space and let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ be an independent subset of V. Is

$$S = {\mathbf{u} + \mathbf{v}, 2\mathbf{u} + \mathbf{w}, \mathbf{v} - 5\mathbf{w}}$$

an independent subset of V? Justify your answer.

Solution

Suppose that a linear combination of the vectors of S is equal to zero, i.e.,

$$a(\mathbf{u} + \mathbf{v}) + b(2\mathbf{u} + \mathbf{w}) + c(\mathbf{v} - 5\mathbf{w}) = \mathbf{0}$$

for some $a, b, c \in \mathbb{R}$. Then $(a+2b)\mathbf{u} + (a+c)\mathbf{v} + (b-5c)\mathbf{w} = \mathbf{0}$. Since $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent,

$$a + 2b = 0$$

$$a + c = 0$$

$$b - 5c = 0$$

Solving for a, b and c, we find that the system has unique solution a=b=c=0. Therefore, S is linearly independent.

Suppose that A is an $n \times n$ matrix with the property that $A^k = 0$ but $A^{k-1} \neq 0$. Prove that

$$B=\{I,A,A^2,\dots,A^{k-1}\}$$

is an independent subset of $M_{\rm nn}$.

Solution

We need to show that

$$r_0 I + r_1 A + r_2 A^2 + \dots + r_{k-1} A^{k-1} = \textbf{0} \quad \overset{?}{\Longrightarrow} \quad r_0 = r_1 = \dots = r_{k-1} = 0.$$

Multiply A^{k-1} on both sides:

$$r_0 A^{k-1} + r_1 A^k + r_2 A^{k+1} + \dots + r_{k-1} A^{2k-2} = \textbf{0}$$

$$\Downarrow$$

 $r_0 A^{k-1} = 0$

Since $A^{k-1} \neq \mathbf{0}$, we see that $r_0 = 0$. Repeat the above processes to show that all $r_i = 0$ for $i = 0, 1, \dots, k-1$.

Theorem (Unique Representation Theorem)

Let V be a vector space and let $U = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq V$ be an independent set. If \mathbf{v} is in span(U), then \mathbf{v} has a unique representation as a linear combination of elements of U.

Proof.

If a vector v has two (ostensibly different) representations

$$\begin{array}{c} \textbf{v} = s_1 \textbf{v}_1 + s_2 \textbf{v}_2 + \cdots + s_n \textbf{v}_n \\ \textbf{v} = t_1 \textbf{v}_1 + t_2 \textbf{v}_2 + \cdots + t_n \textbf{v}_n \\ & \quad \quad \Downarrow \\ \\ (s_1 - t_1) \textbf{v}_1 + (s_2 - t_2) \textbf{v}_2 + \cdots + (s_n - t_n) \textbf{v}_n = \textbf{0} \\ & \quad \quad \Downarrow \\ \\ s_1 - t_1 = 0, \quad s_2 - t_2 = 0, \quad \cdots, \quad s_n - t_n = 0. \\ & \quad \quad \Downarrow \end{array}$$

The two representations are the same one.

The Fundamental Theorem

Bases and Dimension

The Fundamental Theorem

The Fundamental Theorem for \mathbb{R}^n generalizes to an arbitrary vector space.

Theorem (Fundamental Theorem)

Let V be a vector space that can be spanned by a set of n vectors, and suppose that V contains an independent subset of m vectors. Then $m \leq n$.

Proof.

Let $X = \{ \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n \}$ and let $Y = \{ \boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_m \}$. Suppose $V = \operatorname{span}(X)$ and that Y is an independent subset of V. Each vector in Y can be written as a linear combination of vectors of X: for some $a_{ij} \in \mathbb{R}$, $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$\begin{aligned} \mathbf{y}_1 &=& \mathbf{a}_{11}\mathbf{x}_1 + \mathbf{a}_{12}\mathbf{x}_2 + \dots + \mathbf{a}_{1n}\mathbf{x}_n \\ \mathbf{y}_2 &=& \mathbf{a}_{21}\mathbf{x}_1 + \mathbf{a}_{22}\mathbf{x}_2 + \dots + \mathbf{a}_{2n}\mathbf{x}_n \\ &\vdots &=& \vdots \\ \mathbf{y}_m &=& \mathbf{a}_{m1}\mathbf{x}_1 + \mathbf{a}_{m2}\mathbf{x}_2 + \dots + \mathbf{a}_{mn}\mathbf{x}_n. \end{aligned}$$

Proof. (continued)

Let $A = [a_{ij}]$, and suppose that m > n. Since rank $(A) = \dim(\operatorname{row}(A)) \le n$, it follows that the rows of A form a dependent subset of \mathbb{R}^n , and hence there is a nontrivial linear combination of the rows of A that is equal to the $1 \times n$ vector of all zeros, i.e., there exist $s_1, s_2, \ldots, s_m \in \mathbb{R}$, not all equal to zero, such that

$$\left[\begin{array}{cccc} s_1 & s_2 & \cdots & s_m \end{array}\right] A = \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 \end{array}\right] = {\color{red}0}_{1n}.$$

It follows that for each j, $1 \le j \le n$,

$$s_1 a_{1j} + s_2 a_{2j} + \ldots + s_m a_{mj} = 0.$$
 (1)

Consider the (nontrivial) linear combination of vectors of Y:

$$s_1 \mathbf{y}_1 + s_2 \mathbf{y}_2 + \dots + s_m \mathbf{y}_m.$$

Proof. (continued)

$$\begin{array}{rcl} s_1 \boldsymbol{y}_1 + s_2 \boldsymbol{y}_2 + \dots + s_m \boldsymbol{y}_m & = & s_1 (a_{11} \boldsymbol{x}_1 + a_{12} \boldsymbol{x}_2 + \dots + a_{1n} \boldsymbol{x}_n) + \\ & s_2 (a_{21} \boldsymbol{x}_1 + a_{22} \boldsymbol{x}_2 + \dots + a_{2n} \boldsymbol{x}_n) + \\ & \vdots \\ & s_m (a_{m1} \boldsymbol{x}_1 + a_{m2} \boldsymbol{x}_2 + \dots + a_{mn} \boldsymbol{x}_n) \\ & = & (s_1 a_{11} + s_2 a_{21} + \dots + s_m a_{m1}) \boldsymbol{x}_1 + \\ & (s_1 a_{12} + s_2 a_{22} + \dots + s_m a_{m2}) \boldsymbol{x}_2 + \\ & \vdots \\ & (s_1 a_{1n} + s_2 a_{2n} + \dots + s_m a_{mn}) \boldsymbol{x}_n. \end{array}$$

By Equation (1), it follows that

$$s_1 \mathbf{y}_1 + s_2 \mathbf{y}_2 + \dots + s_m \mathbf{y}_m = 0 \mathbf{x}_1 + 0 \mathbf{x}_2 + \dots + 0 \mathbf{x}_n = \mathbf{0}.$$

Therefore, $s_1\mathbf{y}_1 + s_2\mathbf{y}_2 + \cdots + s_m\mathbf{y}_m = \mathbf{0}$ is a nontrivial vanishing linear combination of the vectors of Y. This contradicts the fact that Y is independent, and therefore $m \leq n$.

The Fundamental Theorem

Bases and Dimension

Bases and Dimension

Definition

Let V be a vector space and let $B = \{b_1, b_2, \dots, b_n\} \subseteq V$. We say B is a basis of V if

- (i) B is an independent subset of V and
- (ii) $\operatorname{span}(B) = V$.

Remark (Unique Representation Theorem)

Recall that if V is a vector space and B is a basis of V, then as seen earlier, any vector $\mathbf{u} \in V$ can be expressed uniquely as a linear combination of vectors of B.

Example

As we saw earlier, $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is a basis of \mathbb{R}^n , called the standard basis of \mathbb{R}^n .

Example (A basis of \mathcal{P}_n)

We've already seen that

$$\{1,x,x^2,\dots,x^n\}$$

spans \mathcal{P}_n and is an independent subset of \mathcal{P}_n , and is thus a basis of \mathcal{P}_n .

$$\{1, x, x^2, \dots, x^n\}$$

is called the standard basis of \mathcal{P}_n .

Example (A basis of \mathbf{M}_{mn})

The set of mn m \times n matrices that have a '1' in position (i,j) and zeros elsewhere, $1 \le i \le m$, $1 \le j \le n$, spans M_{mn} and is an independent subset of M_{mn} . Therefore, this set constitutes a basis of M_{mn} and is called the standard basis of M_{mn} .

The Invariance Theorem generalizes from \mathbb{R}^n to an arbitrary vector space V. The proof is identical, and involves two applications of the Fundamental Theorem.

Theorem (Invariance Theorem)

If V is a vector space with bases $\{b_1,b_2,\ldots,b_m\}$ and $\{f_1,f_2,\ldots,f_n\}$, then m=n.

Definition (Dimension of a vector space)

Let V be a vector space and suppose $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis of V. The dimension of V is the number of vectors in B, and we write $\dim(V) = n$. By convention, $\dim(\{\mathbf{0}\}) := 0$.

Example

Let V be a vector space and \mathbf{u} a NONZERO vector of V. Then $U = \operatorname{span}\{\mathbf{u}\}$ is spanned by $\{\mathbf{u}\}$. Since $\{\mathbf{u}\}$ is independent, $\{\mathbf{u}\}$ is a basis of U, and thus $\dim(U) = 1$.

Example

Since $\{1,x,x^2,\dots,x^n\}$ is a basis of $\mathcal{P}_n,\,\dim(\mathcal{P}_n)=n+1.$

Example

 $\dim(M_{\mathrm{mn}})=\mathrm{mn}$ since the standard basis of M_{mn} consists of mn matrices.

Let $U = \left\{ A \in \mathbf{M}_{22} \mid A \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} A \right\}$. Then U is a subspace of \mathbf{M}_{22} . Find a basis of U, and hence $\dim(U)$.

Solution

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}$$
. Then

$$\mathbf{A} \left[\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array} \right] = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array} \right] = \left[\begin{array}{cc} \mathbf{a} + \mathbf{b} & -\mathbf{b} \\ \mathbf{c} + \mathbf{d} & -\mathbf{d} \end{array} \right]$$

and

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] \mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}\right] = \left[\begin{array}{cc} \mathbf{a} + \mathbf{c} & \mathbf{b} + \mathbf{d} \\ -\mathbf{c} & -\mathbf{d} \end{array}\right].$$

If
$$A \in U$$
, then $\begin{bmatrix} a+b & -b \\ c+d & -d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ -c & -d \end{bmatrix}$.

Solution (continued)

Equating entries leads to a system of four equations in the four variables a, b, c and d.

$$\begin{array}{rclcrcl}
 a+b & = & a+c & & & b-c & = & 0 \\
 -b & = & b+d & & & or & -2b-d & = & 0 \\
 c+d & = & -c & & & 2c+d & = & 0
 \end{array}$$

The solution to this system is $a=s,\,b=-\frac{1}{2}t,\,c=-\frac{1}{2}t,\,d=t$ for any $s,t\in\mathbb{R},$ and thus $A=\left[\begin{array}{cc}s&\frac{t}{2}\\-\frac{t}{2}&t\end{array}\right],\,s,t\in\mathbb{R}.$ Since $A\in U$ is arbitrary,

$$U = \left\{ \begin{bmatrix} s & \frac{t}{2} \\ -\frac{t}{2} & t \end{bmatrix} \mid s, t \in \mathbb{R} \right\}$$

$$= \left\{ s \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + t \begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \mid s, t \in \mathbb{R} \right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \right\}.$$

Solution (continued)

Let

$$\mathbf{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right] \right\}.$$

Then span(B) = U, and it is routine to verify that B is an independent subset of M_{22} . Therefore, B is a basis of U, and $\dim(U) = 2$.

Let $U = \{p(x) \in \mathcal{P}_2 \mid p(1) = 0\}$. Then U is a subspace of \mathcal{P}_2 . Find a basis of U, and hence dim(U).

Solution

Final Answer $B = \{x - x^2, 1 - x^2\}$ is a basis of U and thus dim(U) = 2.